TERMS OF REFERENCE FOR PROVIDING THE CONSULTANCY SERVICES OF

Production and establishment of cartographic database for scale 1:100,000 and production of TM100 product specifications
LIST OF ABBREVIATIONS

STOKIS Official Topographic and Mapping Information System
CROTIS Croatian Topographic Information System
BTD Base topographic database
CD25 Cartographic database in scale 1:25000
TM25 Topographic map in scale 1:25000
VOGIS Military geographic information system
UML Unified Modeling Language
CIS Cartographic information system
TM100 Topographic map in scale 1:100000
GIS Geographic Information System
WMS Web Map Service
WFS Web Feature Service
CD100 Cartographic database in scale 1:100000
TD100 Topographic database in scale 1:100000
HTRS96/TM Croatian projected coordinate system
CRSU Central register of spatial units
TD Topographic database
CD Cartographic database
TERMS OF REFERENCE FOR PROVIDING THE CONSULTANCY SERVICES OF

Production and establishment of the cartographic database for scale 1:100,000 and production of the TM100 product specifications

1. Background

Pursuant to the Law on State Survey and the Real Property Cadastre (OG 16/07 and 124/10), the State Geodetic Administration is responsible for the production of state maps whereas the Rules and Regulations on Topographic Survey and State Maps Production (Official Gazette 109/08) essentially describe the process of establishing cartographic databases and production of state maps.

The STOKIS (official topographic and mapping information system) concept envisages the production of topographic and mapping data models, and their implementation through the establishment of topographic and cartographic databases.

CROTIS (Topographic Information System of the Republic of Croatia) defines the basic topographic data model and its implementation has been carried out with the creation of the Basic Topographic Database (BTD). With regards to the activities related to further implementation of the STOKIS project, concept studies have been developed offering a draft cartographic data model, describing the manner of establishing a cartographic database and proposing a catalogue of features to be contained in the CDB25 cartographic database.

The topographic data are contained in the BTD and serve, along with the digital terrain model data, to produce the first draft of topographic maps in the scale of 1:25,000 for the entire territory of RoC. The primary source for the map production was aerial photogrammetry or rather topographic data collected on the basis of aerial photogrammetric shots.

As a follow-up to the BTD and TM25 and pursuant to the agreement related to official cartography, the Ministry of Defence has initiated the VOGIS project aimed at creating the military and geographic system and production of topographic maps in the scale of 1:50,000 and 1:250,000.

2. Objective

a. Establish a cartographic database (CD) for the scale of 1:100,000 (CD100) and develop a corresponding specification containing the definition of the data model (written in UML). In order to manage the CDs, it is necessary to establish a cartographic information system (CIS). The CIS establishment involves the production of a system for efficiently maintaining and presenting cartographic data, and a system for the production of TM100 products.

b. Establish GIS web services (WMS and WFS) enabling the display of the data from the cartographic database (CD100) and topographic maps (TM100).
c. Develop the TM100 product specification and carry out the implementation of the TM100 specification by producing two sheets of the topographic map in the scale of 1:100,000 from the CD100 data. The TM100 map sheet should be produced in accordance with the new sheet division and in the new HTRS96/TM cartographic projection. The area coverage will be defined in the course of procurement procedure, in the invitation to submit the financial and technical parts of the bid.

d. Define the elements and quality procedure for: established cartographic database and TM100. Integrate control mechanisms into the CIS.

3. Scope of services and tasks

The expected time for the implementation of activities from the scope of services and tasks as described is maximum 7 months from the date of contract signing.

3.1. Introduction

The territory of the Republic of Croatia is fully covered by topographic maps in the scale of 1:25,000 (TM25) in analogue and digital (raster and vector) form as well as topographic data contained in the BTD (established on the basis of the CROTIS data model) for the entire territory of RoC. Based on the BTD data, the production of topographic and cartographic databases and maps in the scale of 1:50,000 and 1:250,000 has been initiated for the needs of the Ministry of Defence.

This data is the basis for establishing the databases and datasets in the scale of 1:100,000.

3.2 Original data

The BTD is used as a dataset starting point. The BTD serves to generate all further topographic and cartographic databases (in line with the Rules and Regulations on Topographic Survey and Production of State Maps (OG 109/08)).

Topographic data is being updated, throughout the SGA topographic and cartographic product system (Figure 1) by regularly updating the BTD, followed by all BTD changes being transferred from the other derived database.

The topographic data for certain topographic databases (TD) of smaller scales are derived by implementing modelling generalisation by having modelling generalisation performed for each following TD of smaller scale on the basis of previously established TD of bigger scale.

In order to produce the cartographic database (CD) for a certain scale, cartographic generalisation of the TD of corresponding scale should be performed.

08.08.2016.
3.2.1. Original for TD100 and CD100

According to the methodology described in the Rules and Regulations, the CD100 should be established by implementing cartographic generalisation with the TD100 data.

For it to become possible, the Consultant should first establish the TD100 by modelling generalisation from the topographic database in the scale of 1:50,000 “TD50” taken over from the SGA.

3.2.2. Original for TM100
The Consultant shall perform and configure the CIS "ready to use".
With the help of the installed GIS application it should be possible to develop from the
CD100 standard output in the scale of 1: 100,000 (raster TM100 file, pdf file, TM100 fit for
printing) without additional CD100 data processing.

3.3. Terms of Reference

This project shall encompass the following operations:

a. Develop the data model of the TD100 topographic database described with UML. As
part of the modelling, it is necessary to produce the TD100 feature catalogue. Modelling and developing the data model for TD100 (in objects where this is possible) needs to be done in line with the guidelines and definitions provided in D41_ERMSpecification_v48.pdf and D21_ERMTechnicalGuide_v48.pdf

b. Establish the TD100 by performing modelling generalisation of the topographic data
from “TDB50“ into TD100.

c. Develop the CD100 cartographic database data model described with UML. As
part of the modelling it is necessary to produce the feature catalogues CD100.

d. Develop a schema of the CIS architecture overview (CD100 management system). The CIS should enable: work with the data from the cartographic database (data editing, data addition, data deletion etc.) and linking with other databases of the State Geodetic Administration (TDB, CRSU, toponyms database, permanent geodetic points database), TM100 output development (analogue and digital) and presenting the data of the cartographic database to users. The definition and specification of server and client components should be performed in cooperation with the Client.

e. Produce, install and deliver the adopted program system for the CIS (HTML
application for CD100 data presentation and a GIS application to produce the TM100
products)

f. Establish WMS and WFS services that will enable the display of the data from the
cartographic database (CD100) and topographic maps (TM100).
 - The WMS service shall display the TM100 maps and corresponding sheet
divisions
 - The WFS service shall display the CD100 layers grouped by theme – that are
of interest for physical planners and other institutional users. The themes to be
displayed shall be defined during the task execution.

g. Implement models for TD100 and CD100, including the establishment of the
topographic and cartographic database on the open code spatial database (PostGIS…)

h. Perform the upload of available TD100 data on the basis of two TM100 sheets.
i. Perform the upload of available CD100 data on the basis of two TM100 sheets.
j. Test CIS system and TD100 and CD100 contents

k. Develop the TM100 product specification, documents defining TD100 and CD100,
user instructions for working with CIS and train the SGA staff. The education should
be performed on the premises of the State Geodetic Administration for two employees
at the administrative level and for four employees at the user level.

The part of the project concerning the development of the TM100 product specifications and
implementation in the test area encompasses the following operations:

08.08.2016.
1) Develop the TM100 product specification (whose structure confirms to the existing TM25 specification) with the following content:
 - Introduction
 - Terminology and abbreviations
 - Document history (logbook of changes, reference documents)
 - Document purpose
 - Background (in general, the TM100 use, potential users, originals, previous products, language)
 - Requirements (coverage, coordinate reference system, altitude system, map demarcation), manner of collecting and displaying data of neighbouring countries
 - Delivery (list of deliverables, report, digital data, analogue data – map, file naming...)
 - TM100 production process
 - Cartographic generalisation for the 1:100,000 scale
 - TM100 printing
 - TM100 topographic map content (cartographic key)
 - Sheet nomenclature (new division in TM100 sheets)

2) Production of two TM100 sheets. The area coverage will be defined in the course of procurement procedure, in the invitation to submit the financial and technical parts of the bid.

3) Define the TM100 quality elements and describe the process of quality control of each quality element.

The names of the two TM100 sheets mentioned in the text above are as follows:
IME_LISTA: Dubrovnik
NOMENKL: 100-112-8, and
IME_LISTA: Trsteno
NOMENKL: 100-111-8.

4. Outputs
 a. TM100 product specification describing: TM100 content, TM100 production process, TM100 cartographic key, cartographic generalisation for the 1:100,000 scale.
 b. The documents defining TD100 and CD100 with the remark that the submitted documents must contain the data models with the database contents described in detail, and procedures of modelling generalisation from TD50 into TD100. The documents must be written in such a way as to enable the re-establishment of TD100 and CD100 and of the procedures for downloading from TD50 into TD100.

As part of the documentation submitted, the Consultant shall submit all the required additional files that can assist the performance of the above-mentioned action (e.g. workspace files for FME...).

 c. The TM100 and CM100 established on the basis of open code (Post GIS or similar) with downloaded data on the basis of two TM100 sheets.
d. Cartographic information KD100 management system The system should represent an efficient solution in terms of maintaining the cartographic data, presenting cartographic data and producing the TM100 products.

e. Established, tested and documented production process for TM100 products (by using GIS tools).

f. The established CD100 (WFS and WMS) web GIS services.

g. Enabled maintenance (periodic and at invitation) of the implemented system (CIS) for the period of 12 months after the Project close.

h. The user manual for working with CIS handed over to the Client, SGA staff training completed.

5. Quality Control

The CIS must have an integrated data quality control system, given the Cartographic Database model requirements or rather quality control requirements (logical consistency) for all elements to which automated procedure could be applied.

In the TM100 specifications part related to the production, the internal quality control system must be described or rather the quality elements for analogue and digital products should be defined. The results of the completed internal quality control as well as the description of the control implementation for each quality element must be documented.

The quality control procedures must be in accordance with the existing quality control documents in line with the ISO 19100 standard series methodology. Operational tables where quality control results are inscribed should be produced for the quality control execution.

6. Acceptance of completed works

During the implementation of this Contract, the technical activities will be adopted by the State Geodetic Administration, by the Coordinator as defined in Article 4.A of the Contract, in accordance with the requirements in these Terms of Reference. In case of failure to carry out the activities in accordance with these Terms of Reference in a manner satisfactory to the Purchaser, the Consultant shall correct the noted shortcomings, until the results have been accepted by the Purchaser, at their own cost.

The criteria for accepting Project results for the establishment of cartographic databases are:

- Functioning of information systems (CIS) with the ability of realising the requirements defined by the Technical Specifications (data upload, data edit, data addition, data deletion).

- Linking to other databases of the State Geodetic Administration (Base Topographic Database, SUCR, toponyms database, permanent geodetic point database).

- Defining TM100 outputs (analogue or digital).

08.08.2016.
Presenting data of the Cartographic database to users, functioning of web services for uploading data on observed changes.

The criterion of accepting results of the TM100 Product Specifications Development Project is the implementation of the produced specifications in the production of the TM100 test sheet with the performed quality control i.e. fulfilling the conditions defined by these Terms of Reference.

7. Approach and Methodology

The Law on State Survey and Real Property Cadastre (OG 16/07 and OG 124/10) and the Rules and Regulations on Cadastral Survey and State Map Production (OG 109/08) are the basic documents regulating the area of the State maps' production and cartographic database establishment.

Pursuant to Article 23 of the Rules and Regulations on Cadastral Survey and State Map Production (OG 109/08), the basic principles of establishing topographic and cartographic databases are conformant to STOKIS.

For the purpose of establishing the cartographic databases the studies developed under the STOKIS project will be used along with the newly adopted specifications:

- STOKIS (June 2002): “Cartographic data model”
- STOKIS (August 2002): “Establishment of Cartographic and Topographic Database”
- STOKIS (April, 2003): “Graphic and Alpha-numeric Code System of State Topographic Maps”
- SGA (2011): Topographic data product specification (v. 1.2)
- SGA (2011): TM25 product specification (v. 1.2)
- SGA (2011): CROTIS v. 1.2
- SGA (2014): CROTIS v 2.0

Account shall be taken that modelling and developing data models for TD100 and CD100 (in objects where this is possible) is done in line with the guidelines and definitions provided in D41_ERMSpecification_v48.pdf and D21_ERMTechnicalGuide_v48.pdf

All the afore-mentioned works should be performed in accordance with the corresponding existing regulations and instructions given to the contractor by the State Geodetic Administration.

08.08.2016.
After the successful completion of this task, all documents and products remain the property of the SGA that disposes with them as prescribed by Law.

The Client shall provide free of charge all required data, documentation and information related to the implementation of this task that are the SGA product or property and the technical assistance, as needed.

The Consultant shall ensure the entire office space, equipment, materials, transportation costs and additional costs that are required for the execution of this task.

All data that have been or will be submitted to the Consultant for the purpose of performing this task and all the data created after the completed works remain permanent property of the State Geodetic Administration and may be used only for the purpose of performing the works that are defined in this technical specification.

8. Shortlisting criteria

The Consultant shall be a firm or association of consultants in the form of a joint venture or sub consultancy with following qualifications:

[1] Approval of the State Geodetic Administration for the performance of expert geodetic works (activities) in accordance with Article 9, paras. 2.5 and 2.6 of the Law on the Performance of Geodetic Activities (OG 152/2008, 61/2011 and 56/2013).

[2] The delegated person from the Contractor, responsible for performing the operations related to State survey and real property cadastre, shall be a licensed geodetic engineer.

[3] The Bidder shall meet at least the following criteria:

• familiarity with the topographic survey procedures for the needs of the State cartography along with the standardization of the data model development in the Republic of Croatia
• practical experience in processing topologically the planimetric data and altitude view data of the photogrammetric mapping.
• practical experience in producing State maps
• practical experience in producing geographical information systems based on cartographic data.

In order to prove the above-mentioned, the Bidder shall enclose client references confirming successfully completed projects on the:

1. Production of the topographic information system
 • For at least one completed project

2. Production of the cartographic data model
 • For at least one completed project

3. Topological processing
 • Proof that the Bidder has participated in processing topologically the planimetric data and altitude view data of the photogrammetric mapping or rather in processing
topologically data of similar nature (renewal of geodetic survey data content in order to store the data in the spatial database etc.) in at least one completed project

4. Production and design topographic maps
 • For at least one completed project
5. Production of the geographical information system
 • At least one completed GIS project based on cartographic data

[4] Proof that the Bidder’s key personnel shall include the experts who will be available throughout the project, as follows:

1. Experts for cartography and topographic information systems - 2 experts
 • Graduate geodetic engineer, Ph.D. in technical sciences is advantage
 • At least 10 years of experience in the field of cartography and topographic information systems in the Republic of Croatia
 • Experience in organising, leading and managing a team, reporting on the contract activities (no less than 3 contracts) carried out according to international standards (submit proof on the required experience)

2. Specialists for IT systems and GIS - 2 specialists
 • Graduate geodetic engineer / geo-information specialist or specialist in a related profession
 • At least 5 years of experience in working with IT systems in the field of spatial information in the Republic of Croatia
 • Participating in the implementation of at least 3 contracts carried out according to international standards (submit proof of participation)

Annex

The following make integral parts of this Annex:

1. Topographic data model CROTIS 2.0 – available on the SGA web-site:

 http://www.dgu.hr/assets/uploads/Dokumenti/Novosti/CROTIS/CROTIS_v_2_0.pdf

2. Technical specifications and instructions related to EuroRegionalMap (ERM)

 (click to open the file)

 dokumentacija ERM.zip

3. Form: Consultant’s Organization and Experience

Form:

Consultant’s Organization and Experience

A - Consultant’s Organization

08.08.2016.
[Note: Provide here a brief description of the background and organization of your firm/entity and each associate for this assignment.]

B - Consultant’s Experience

[Note: Using the format below, provide information on each assignment for which your firm, and each associate for this assignment, was legally contracted either individually as a corporate entity or as one of the major companies within an association, for carrying out consulting services similar to the ones requested under this assignment.]

<table>
<thead>
<tr>
<th>Assignment name:</th>
<th>Approx. value of the contract (in current US$ or Euro):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Country:</td>
<td>Duration of assignment (months):</td>
</tr>
<tr>
<td>Location within country:</td>
<td>Total N of staff-months of the assignment:</td>
</tr>
<tr>
<td>Name of Client:</td>
<td>Approx. value of the services provided by your firm under the contract (in current US$ or Euro):</td>
</tr>
<tr>
<td>Address:</td>
<td>N of professional staff-months provided by associated Consultants:</td>
</tr>
<tr>
<td>Start date (month/year):</td>
<td>Name of senior professional staff of your firm involved and functions performed (indicate most significant profiles such as Project Director/Coordinator, Team Leader):</td>
</tr>
<tr>
<td>Completion date (month/year):</td>
<td>Narrative description of Project:</td>
</tr>
<tr>
<td>Name of associated Consultants, if any:</td>
<td>Description of actual services provided by your staff within the assignment:</td>
</tr>
</tbody>
</table>

Firm’s Name: ___